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I Will note that the title of this is somewhat of a misnomer, as the Dirichlet

problem requires functions or forms to be 0 on the boundary, while we don’t

have a boundary.

The notes this week will be fairly short, as this follows in large part from my

notes.

Lemma 0.1. A sequence {xn} ⊆ H1(or H1Ωk(M)), converges weakly to x iff

f(xn) → f(x) for all bounded linear functionals f

Proof. Riesz Representation Theorem

Lemma 0.2. Given S ⊆ H1(or H1Ωk(M)) the set {v ∈ H1 : ⟨v, w⟩L2 =

0,∀w ∈ S} is weakly closed.

Proof. We have for each w ∈ S the set w⊥ = {v ∈ H1 : ⟨v, w⟩L2 = 0} is weakly

closed, since v 7→ ⟨v, w⟩L2 is a bounded linear functional.

Therefore,

{v ∈ H1 : ⟨v, w⟩L2 = 0,∀w ∈ S} =
⋂
w∈S

w⊥

is weakly closed

1



Lemma 0.3. The functional w 7→ ∥dw∥2L2 + ∥d∗w∥2L2 is weakly sequentially

lower-semicontinuous

Proof. Every weakly convergent sequence is bounded in norm, hence by Rellich-

Kondrachov it is convergent in the L2 norm

Thus we have that, since norms are weakly sequentially lower-semicontinuous

and √
∥(d+ d∗)w∥2L2 + ∥w∥2L2

is an equivalent norm on Sobolev differential forms,

lim inf(∥dwn∥2L2 + ∥d∗wn∥2L2) ≥ ∥dw∥2L2 + ∥d∗w∥2L2

since d, d∗ have orthogonal images.

Lemma 0.4. The set

{v ∈ H1 : ∥v∥L2 = 1, ⟨v, w⟩L2 = 0,∀w ∈ ker△k} = {v ∈ H1 : ∥v∥L2 = 1, v⊥L2 ker△k}

is weakly closed

Proof. The set {v ∈ H1 : ∥v∥L2 = 1} is clearly weakly closed, hence the set

above is the intersection of closed sets

Theorem 0.1. The minimum on H1Ωk(M) of

min
v ̸=0,v⊥L2 ker△k

B[v, v]

∥v∥2L2

= CPoin > 0

where B[u, v] = ⟨dv, dw⟩L2 + ⟨d∗v, d∗w⟩L2

Proof. Note that by scaling v 7→ v
∥v∥L2

this is equivalent to showing that

min
∥v∥L2=1,v⊥L2 ker△k

B[v, v] = c > 0
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but this minimum is achieved, and clearly we have that, by taking the derivative

of B[v,v]

∥v∥2
L2

, we find that

B[u, v]− c ⟨u, v⟩L2 = 0,∀u ∈ ⊥L2 ker△k

and in particular c = 0 implies that

B[u, v] = 0 ⇒ B[u, u] = 0 ⇒ u ∈ ker△k

which is impossible.

Theorem 0.2. Given f ∈ L2Ωk(M) with f⊥L2 ker△k, there exists a solution

g ∈ H2Ωk(M) of △kg = f with g⊥L2 ker△k

Proof. We minimize the functional

B[u, u]− ⟨u, f⟩L2

over u ∈ H1Ωk(M) with u⊥L2 ker△k

Note that given ε > 0 there is some C(ε) > 0 so that

⟨u, f⟩L2 ≤ ∥u∥L2 ∥g∥L2 ≤ ε ∥u∥L2 + C(ε) ∥g∥L2

Also, by the prior theorem

B[u, u] ≥ 1

2
B[u, u] +

CPoin

2
∥v∥2L2

and hence if CPoin

4 = ε > 0 we find that

B[u, u] ≥ min{CPoin

4
,
1

2
} ∥u∥2H1 − C(ε) ∥g∥L2
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This is clearly coercive, and also evidently the functional is weakly sequentially

lower-semicontinuous. Thus g is a weak solution. By regularity theory we have

the desired result.

I will note that this solution is unique, which can be seen by taking the

second derivative, which is strictly positive along every line.

Theorem 0.3. Every ω ∈ Ωk(M) can be written as ωH + dα + d∗β where ωH

is harmonic. This sum is mutually orthogonal in that every two of these are

orthogonal.

Proof. Combine the last theorem, plus extra regularity since ω is smooth, with

(ω−PHω)⊥L2 ker△k, where PH is the orthogonal projections onto the harmonic

forms. We know this exists since the set of harmonic forms is finite dimensional.

Corollary 0.1. Every de Rham cohomology class has a harmonic representative

Proof. If dω = 0 then

0 = ⟨dd∗β, β⟩L2 = ⟨d∗β, d∗β⟩L2

and hence

ω = ωH + dα

and thus ωH is the form we are looking for.
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